

Professor David Gillen (University of British Columbia)& Professor Tuba Toru-Delibasi (Bahcesehir University)

Aviation Economics & Finance

Istanbul Technical University
Air Transportation Management
M.Sc. Program

Module 6: 24 November 2015

OUTLINE

Cost classification

- Variable
- Fixed
- Short run vs long run

Cost relationship with:

- Distance
- Traffic levels
- Network size and scope

OUTLINE - CONT.

- Cost Structure
 - Fuel
 - Labour
 - Marketing & distribution
 - Taxes
 - Air navigation
 - Airport fees
 - Other costs
- Economies of scale, scope and density

A. Cost Classification

VARIABLE, FIXED AND TOTAL COSTS

- Variable costs are costs that change with the level of production
 - i.e., fuel costs for aircraft is higher if more flights are performed with an aircraft
- Fixed costs do not vary with the level of production
 - i.e., the ownership costs of an aircraft (lease payment, interest payment, insurance) are the same whether the aircraft flies or is parked
- Total costs" the sum of variable and fixed costs

AVERAGE AND MARGINAL COSTS

- Average costs are obtained by dividing costs by total output
 - Average costs per passenger
 - Flight cost: \$5000
 - Pax = 100
 - Average cost = \$50
- ATC = Total Costs/Total Output
- AVC = Total Variable Costs/Total Output

AVERAGE AND MARGINAL COSTS

- Marginal cost (incremental cost)
 is the change in total costs by adding one more
 unit of output
 - Marginal cost
 - Flight cost: \$5000 for 100 passengers
 - Flight cost: \$5025 for 101 passengers
 - Perhaps extra fuel, an extra drink, a bit more time for cleaning aircraft
 - Marginal cost = \$25

AVERAGE AND MARGINAL COSTS

- Marginal cost (incremental cost) is the change in total costs by adding one more unit of output
 - Marginal cost of 101st passenger may be different from the marginal cost of 110th passenger
 - E.g., extra flight attendant may be required
 - Pilot might add more fuel for 10 pax, but not for one

LONG RUN VS. SHORT RUN COSTS

- In the short run, costs can be variable or fixed
 - There are costs that are obligations for a period of time
 - e.g., lease payments might be 'locked in' for 3 years for a given aircraft
 - Labour contracts last a fixed period

LONG RUN VS. SHORT RUN COSTS

- In the long run, costs eventually become variable
 - Lease may have option to return the aircraft after 3 years
 - Hence the lease cost now becomes variable
 - Even with a given aircraft on a long term lease, lease costs may be variable
 - A320 frame numbers 15-37 may be on a 20 year lease
 - But if aircraft #5 has its lease expiring this year, the size of the fleet can be changed by returning that aircraft

OUTPUTS IN A MULTI-OUTPUT INDUSTRY

Airlines produce many outputs

- Scheduled passenger services, cargo services, charter services
- Standard metric of output is Available Seat Kilometer (ASK)

Airlines are in Many Product Markets

- Business travel, leisure travel, vacation packages
- Is each route a different product market? We have seen these in our study of demand (Module 2)

B. CASM, RASM AND BELF

COSTS AND REVENUES

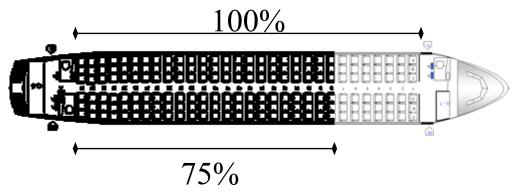
- Costs and revenues are compared in unit terms:
 - CASM = Cost per available seat mile

Total operating costs

(total seats available for purchase * total miles flown)

RASM = Revenue per available seat mile
 <u>Total operating revenues</u>
 (total seats available for purchase * total miles flown)

RASM > CASM, good/profitable RASM < CASM, not so good/not profitable



LOAD FACTOR

Load Factor:

Measure of how full a plane is, by percentage

- Passengers ÷ Total Available Seats = Load Factor
- Load factor can also be computed as
 - Revenue passenger miles ÷ Available seat miles
 - Or as a weight load factor
 - Revenue ton miles ÷ Available ton miles

BREAK EVEN LOAD FACTOR

- BELF = load factor
 where flight costs are covered
 - BELF = CASM/RASM
 - Ex) CASM = 5 cents RASM = 7 cents BELF = 71%
 - Ex) CASM = 5 cents RASM = 4.8 cents BELF = 104%
 - I.e., even if the aircraft is full, flight will lose money (NW in 2003)

YIELD VS. RASM

- RASM = Revenue per *available* seat mile
 <u>Total operating revenues</u>

 (total seats available for purchase * total miles flown
- Yield = Revenue per occupied seat mile
 Total operating revenues
 (number of seats sold * total miles flown)
 - Ex) 120 seat aircraft, 100 are sold flight distance = 1000 miles Flight revenue = \$7500

Seats	Pax	dist	ASM	RPM	Revenue		RASM		Yield
120		1000	120,000		\$	7,500	\$ 0.06	3	
	100	1000		100,000	\$	7,500			\$ 0.075

YIELDS

• Comparisons of revenue earned on routes of different lengths.

ORD-JFK
$$\frac{\$109}{740 \text{ mi}} = 14.7 \text{¢}$$
ORD-LAX $\frac{\$109}{1,745 \text{ mi}} = 6.2 \text{¢}$

WHAT ARE THE KEY DRIVERS OF AIRLINE COSTS?

- Operating expenses (IATA, 2008)
 - Fuel (32%)
 - Labor wages and benefits (20%)
 - Depreciation and amortization (6%)
 - Aircraft Rentals (4%)
 - Everything else (38%)

C. COST MANAGEMENT

FUEL COSTS

- Greatest share of an airlines operating costs
- Fuel cost per available seat mile is affected by
 - Fuel price
 - Fuel efficiency
- Airlines can create fuel efficiencies through
 - Right sizing aircraft to demand on route
 - Use of fuel-efficient aircraft
 - Effective flight planning
 - Longer stage lengths have lower fuel cost per mile
 - Lower engine use while taxiing/ grounded at airports

LABOUR COSTS

- **Second largest operating cost**
- Can be difficult to alter costs
 - Generally a unionized labour force
 - Difficult to change contracts to match changes in demand
 - Government regulations on work rules
- Bankruptcy has been used to achieve lower labour costs
 - Improved productivity (ex 2 vs 3 pilots on 737-200)
 - Lower wages or benefits
- Changes to work rules Source: Vasigh et al. (2008)

MAINTENANCE COSTS

A high costs

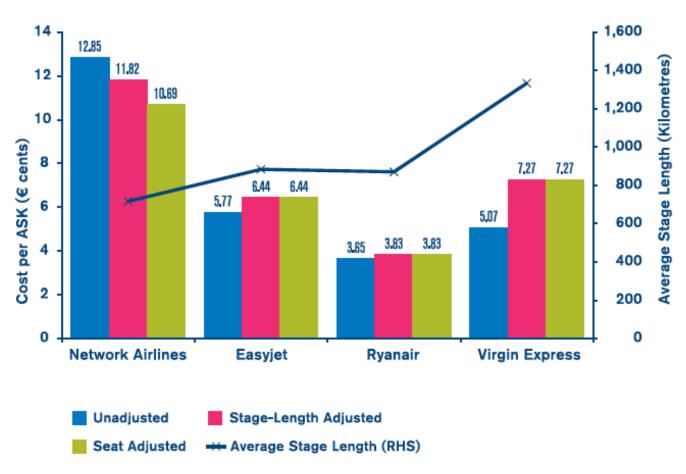
- But safety is more important than cutting costs
 - Huge costs of safety failure
 - Lower revenues if pax perceive safety problems

Airlines manage maintenance costs by:

- Outsourcing maintenance to third-parties
 - Varies amongst airlines
- Having a younger fleet
 - Older aircraft require more maintenance/checks
- Having a common fleet
 - Requires less spare parts inventory

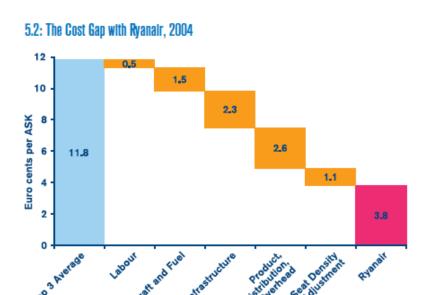
OTHER OPERATING COSTS

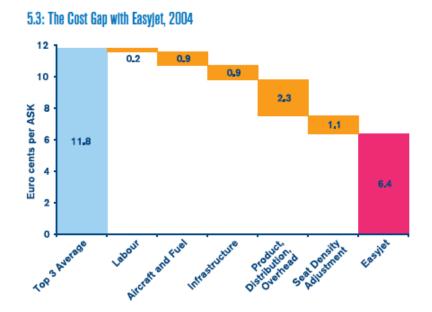
Examples:


- Airport costs
- Catering costs
- Distribution costs
- Administrative expenses

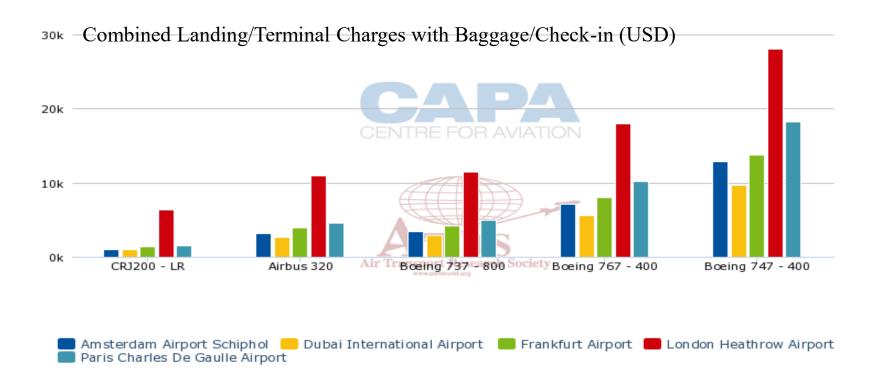
HOW DIFFERENT ARE COSTS AMONG

5.1: Operating Cost per ASK, 2004




Source: Airline Cost Performance IATA Economics Briefing No. 5 (July, 2006)

COST GAPS-EXPLAINING THE DIFFERENCE



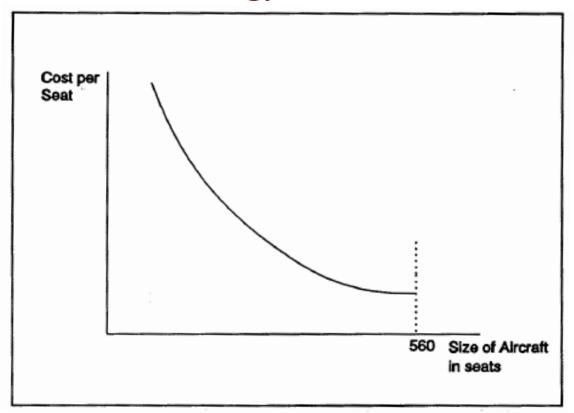
Source: Airline Cost Performance IATA Economics Briefing No. 5 (July, 2006)

COST DIFFERENCES ACROSS AIRPORTS

Source: CAPA, Aviation Analysis, Unit cost analysis of Emirates, IAG & Virgin; about learning from a new model, not unpicking it, 11th January, 2014

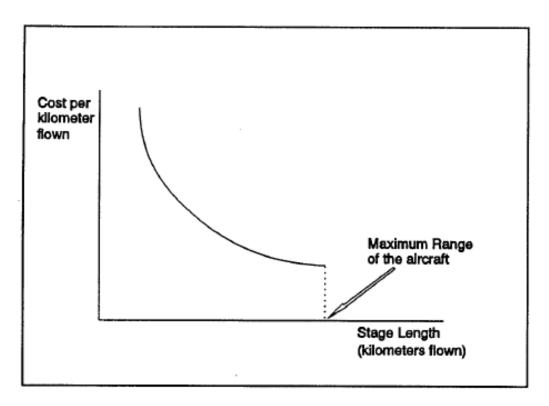
D. COST RELATIONSHIPS

COST CHARACTERISTICS


- Larger aircraft tend to have lower CASM than smaller aircraft
- Longer distance flown tends to lower CASM
- Higher load factors reduce costs per passenger
- Adding more flights or more seats on a flight reduces per seat costs
- Higher flight frequency on a route lowers costs
 - Ex) station manger costs, advertising costs do not increase

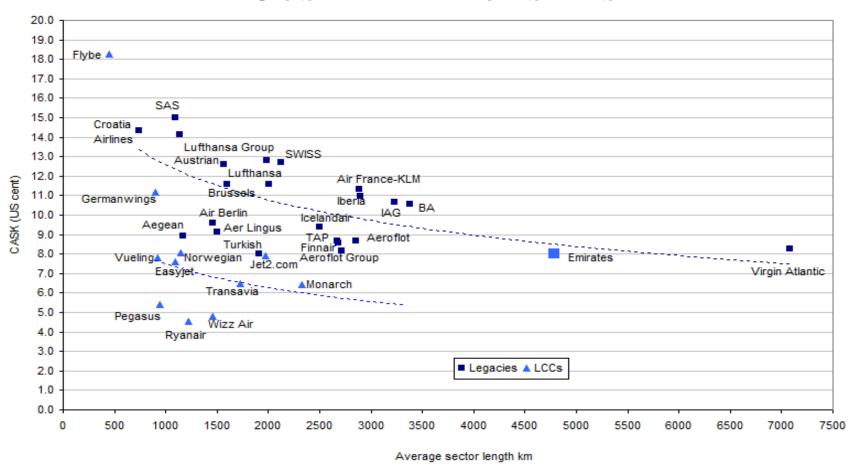
COST PER SEAT AND AIRCRAFT SIZE

Decline in cost per seat generally represents technology


Source: Tretheway and Oum (1992) November 23-28

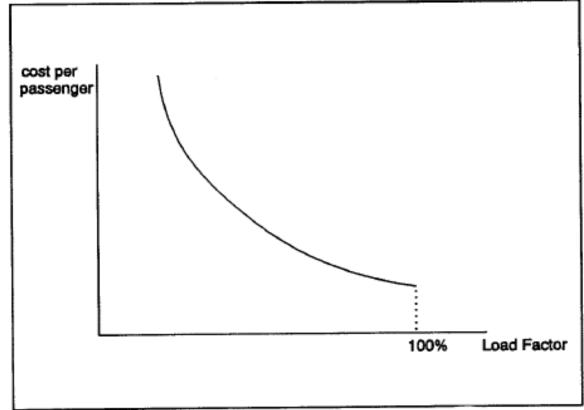
RELATIONSHIP BETWEEN COST AND DISTANCE FLOWN

 Many costs are the same across distance flown, so cost per kilometer flown decreases with distance



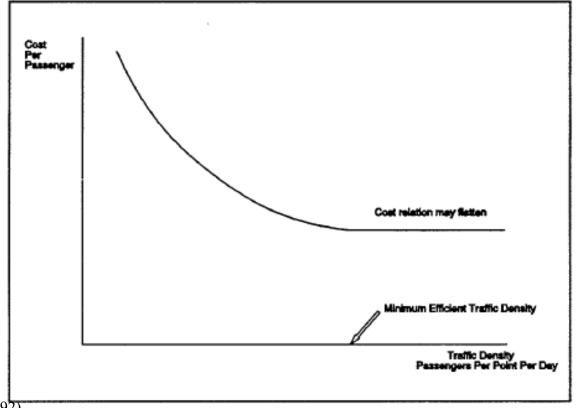
Source: Tretheway and Oum (1992)

COST RELATIONSHIPS


Source: CAPA, Aviation Analysis, Unit cost analysis of Emirates, IAG & Virgin; about learning from a new model, not unpacking it, 11th January, 2014

COST PER PASSENGER AND LOAD FACTOR

- A large portion of the cost of a flight is fixed
 - The cost per pax will fall as more seats are sold


Source: Tretheway and Oum (1992)

TRAFFIC DENSITY

 Adding more flights or more seats on a flight for a given route reduces per seat costs

Source: Tretheway and Oum (1992)

OPERATING LEVERAGE

- Ratio between growth in operating profit and growth in sales
 - Elasticity showing relationship between financial health and sales growth
- Can also be viewed as the percentage of fixed costs
- Higher operating leverage results in income being more affected by changes in sales

Source: Vasigh et al. (2008)

ECONOMIES OF SCALE AND SCOPE

Economies of scale

- Occur when average cost decreases with increased quantity produced
 - Common in high fixed cost industries (aircraft manufacturers, electric power)

Economies of scope

- Cost-efficiencies from running multiple projects or processes together rather than separately
 - It is cheaper to produce TVs in a factory that also produces other electronic goods

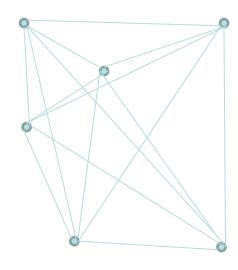
AIRLINE ECONOMIES

Economies of Network size

- Adding more points to the network does not necessarily reduce the cost per passenger
 - Adding points simply replicates costs add a station manager, sales team, flight costs for daily flight

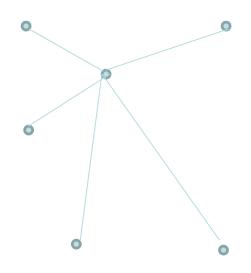
Economies of Traffic Density

- Serving more passengers on a give route has lower costs per passenger
 - Can use larger aircraft
 - Seat managers call sell a higher share of the seats while still protecting some seats for late booking high fare pax


ECONOMIES OF DENSITY

- Economies of density
 - Consolidating operations to create cost efficiencies
 - Hub-and-spoke systems for airlines
 - Hub-and-spoke systems require fewer flights to connect Origin
 - destination airport pairs than point-to-point systems
 - » (n-1) flights for hub-and-spoke systems
 - » $\frac{n \times (n-1)}{2}$ flights for point-to-point systems
 - This is a cost savings from reduced use of resources
 - Although average pax trip distances are longer
 and flight costs may be higher due to shorter stage length

HUBS VS POINT TO POINT



Point to Point 15 routes for 6 points

HUBS VS POINT TO POINT

Hub & Spoke 5 routes for 6 points

END OF MODULE 6